General properties of realistic neural network dynamics
نویسندگان
چکیده
منابع مشابه
Realistic control of network dynamics.
The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behaviour or fail. Here we show that it is possible to exploit the same principle to control network behaviou...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Neural network dynamics.
Neural network modeling is often concerned with stimulus-driven responses, but most of the activity in the brain is internally generated. Here, we review network models of internally generated activity, focusing on three types of network dynamics: (a) sustained responses to transient stimuli, which provide a model of working memory; (b) oscillatory network activity; and (c) chaotic activity, wh...
متن کاملA general regression neural network
A memory-based network that provides estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface is described. The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel structure. It is shown that, even with sparse data in a multidimensional measurement space, the algorithm provides smooth transitions from...
متن کاملImplementation of a Biologically Realistic Parallel Neocortical-Neural Network Simulator
The primary goal of this simulator is to create a novel classi er based on a biologically realistic neocortical-neural network. Parallel processing of this very large-scale, object-oriented simulator is key for approaching real-time simulation of synaptic and neocortical network dynamics. Clustering algorithms applied to the dense cellconnection matrix enable load-balancing and data parallelism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1997
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(97)00166-1